Molecular Modeling 2020--Lecture 20, loops and linkers

Homology modeling

Grafting

linker design

De novo loop building

Loop modeling by manual alignment

Current alignment (all matches)

target **template**

select block, option/alt-middlemouse drag right (creates space)

Select, **left-mouse** drag residues you want to model into the space, unaligned.

target template

residues to be added by loop search

residues to be deleted

ignored by MOE

Automated Loop Search

Exercise 20.1 Loop search by Homology Modeling

- Open messedup.moe (course website or LMS)
- Delete 2gb1 and target sequence, leaving only the model.
- Find the <u>bad part</u> of the model. Mark it.
- Select model chain. Edit | copy as... fasta. Edit | paste.
- Unalign segment to be modeled

- Run Homology Model (Open Database Viewer.)
- Browse the loops (Hide everything in MOE window, then DBV: File | Browse...)
 - Hit start button. MOE window cycles through models.
 - MOE: Protein | Geometry | phi-psi, Resides: Browser
 - Mark the ones with the fewest outliers.
 - Choose one. Send to MOE.

Exploring the MOE loop modeling function

Interactive protein loop modeling procedure in MOE

Search for multiple loops simultaneously

Demo/Exercise 20.2: De novo loop search

SEQ: <u>Select a loop</u> to be modeled.

Protein | Loop Modeler.

Select "de novo".

Set Loop Limit=100. Run. Wait and watch.

Sort loops. Look at scoring function.

6

Demo/Exercise 20.3: PDB loop search

SEQ: <u>Select a loop</u> to be modeled.

Protein | Loop Modeler.

Select "PDB".

Set Loop Limit=100. Run. Wait and watch.

Sort loops. Look at scoring function.

length=4

length=6

Iength=8

Loop modeler in "de novo" mode can't make a helix

...in 100 tries.

Protein | Loop modeler "de novo" mode is not ready for primetime.

Loop Modeler in "PDB" mode finds mostly helix, for a helical segment.

Use Protein | Loop modeler in "PDB" mode, or use Homology Model

de novo vs PDB

- As the loop length increases, the conformational space possible increases *exponentially*
- Random likelihood of <u>canonical</u> secondary structure is low. Random search doesn't find it.
- In PDB loops, frequency of secondary structure in proportional to its frequency in real proteins. 10

Splitting/joining

Linker design -- Sortase A

Sortase A is a bacterial protease that cuts at the sequence c. Cutting is triggered by calcium ions.

in-line Sortase A construct

SrtA may be cloned inbetween two protein segments, then cleaved, leaving two separate chains which may then be separated by chromotography.

The N-terminus may be linked to an affinity reagent ★ which is then removed by adding Ca²⁺

Self-priming biosensor

Leave-one-out green fluorescent protein -- a peptide biosensor that glows when peptide is bound. It needs to have a peptide bound in order to mature. Then the peptide must be removed. We can use SrtA and its target LPXTG inline as a self-cleaving, covalently linked peptide, removed by adding calcium!

1. Link the C-terminus of SrtA to the N-terminus of the LPETG peptide.

2. Link the Cterminus of LPETG to the Nterminus of GFP

Exercise 20.3: Design a linker to span from C-terminus of SrtA to the active site.

Open **SrtA.moe** from course web site (or LMS).

Select one C-terminus and one N-terminus to link and run Protein | Linker Modeler.

Protein | Linker Modeler

Select C-terminus of peptide-SrtA and the L of LPETG

Click "Anchors in Selection"

Make the link 15 glycines, G(15). Apply

Check PDB or de novo. (Dont run de novo. De novo is very slow.)

RMSD limit: 0.75

Maximum anchor error: 0.8

Maximum anchor RMSD: 0.4

Run.

Select a linker, Build.

Send to MOE. Display ribbon only. Color ribbon by Terminus.

Review questions

- Name three ways to create a loop in MOE.
- What is a 4-for-2 loop search?
- How does the PDB mode work for Loop modeler?
- How does the de novo mode work?
- Why do protein modelers need to make linkers?
- What are the considerations when designing a linker?