Exercise 2 — adding waves -- due Mon. Oct 26

Draw/write on these slides.

Save as PDF.

Upload to http://www.bioinfo.rpi.edu/bystrc/courses/bcbp4870/homework.html

part 1

- (1) Look at the setup on the next page, a square unit cell of width 5.00Å, with 2 hydrogen atoms in it. Xrays come in from the left, scatter at $2\theta=90^{\circ}$.
- (2) Measure the distance traveled from Wall A to Atom 1 (r_1) to Wall B, traveling along beam direction s_0 = (1,0,0) and scattered wave s= (0,1,0), respectively. Divide by the wavelength. Multiply by 2π (or 360) to get the phase in radians (or degrees).
- (3) Do the same for Atom 2 (r_2) . Fill in Table 1.
- (4) Add the two waves in Argand space (slide 20 of this lecture). Measure the resulting length (amplitude A) and phase (α) .

Exercise 2 — copy this page and draw on it — due Mon. Oct 26 Wall B the wave detector

Exercise 2 — part 2

Calculate the wave sum using the Fourier transform

$$F(S) = \sum_{k} \varrho(r_k) e^{i2\pi S \cdot r_k}$$

$$\lambda = 1.54 \text{Å}$$

$$\mathbf{s_0} = (1, 0, 0)$$

$$s = (0, 1, 0)$$

$$\mathbf{S} = (\mathbf{s} - \mathbf{s_0})/\lambda = \begin{pmatrix} & & & & \\ & & & & \end{pmatrix}$$

Table 2	Measure Å coordinates of r_k relative to origin from previous page.		$A_k = \varrho(r_k)$	$\alpha_k = 2\pi \mathbf{S} \cdot \mathbf{r}_k$	$A_k \cos(\alpha_k)$	$i A_k \sin(\alpha_k)$
k=1						
k=2						
		sum				
		Amplitude $(A) = (imag, real) $				

phase $(\alpha) = \tan^{-1}(imag/real)$ (in degrees)